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Abstract—Treatment of Na,Nx-ditritylated linear and aromatic polyamines and of polyamine conjugates of the alkaloid kukoamine
A (KukA) type with N,N 0-bis(tert-butoxycarbonyl)thiourea in the presence of Mukaiyama�s reagent produced high yields of deriv-
atives guanylated at the secondary amino functions.
� 2004 Elsevier Ltd. All rights reserved.
The guanidine group is a common structural key ele-
ment in a variety of natural and synthetic compounds,
which show interesting biological properties or chemical
behavior and have therefore found important applica-
tions in medicinal,1–4 bioorganic,5 and supramolecular1

chemistry, and most recently in asymmetric synthesis.6

Replacement of an amino group in a biologically active
compound by the strongly basic guanidinium group re-
sults in a significant increase of its potency and/or selec-
tivity.3,7,8 The guanidinium function is also found in a
variety of biologically interesting natural and synthetic
polyamine (PA) analogs and conjugates (PAC).7–15

The most popular synthetic protocol for the preparation
of guanidinium compounds in liquid2,3 or on solid
phase1 is by reacting the corresponding amino com-
pound with a suitable guanylating reagent. Frequently
used reagents for this purpose are either of the 1H-pyr-
azole-1-carboxamidine type (e.g., 1) or of the N,N 0-
disubstituted thiourea (2) or S-methylisothiourea (3)
type or recently, N,N 0-disubstituted-N00-triflylguanidines
(4). A comparative study of the guanylating potencies of
various guanylating reagents has been published.16 Pri-
mary amines react smoothly and efficiently with these
reagents whereas sterically more demanding secondary
or electronically deactivated aromatic amines present
various problems. In these cases, the reagents of choice
seem to be 1c,17 2 activated by either HgCl2
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Mukaiyama�s reagent (MR, 5)19 or carbodiimides,1,20 3
also activated by HgCl2

3 and 4.5d,16,21 Although several
examples of guanylation of the primary amino functions
of selectively protected polyamines and conjugates have
been reported, guanylation at their secondary amino
functions is rare.7,22 We now wish to report our prelim-
inary results on the efficient guanylation of the second-
ary amino functions of (a) linear and aromatic PAs,
selectively protected at their primary amino functions
with the bulky, mild-acid sensitive, and hydrogenolyti-
cally labile triphenylmethyl (trityl, Trt) group, and (b)
PACs of the alkaloid KukA type.

In order to establish the most efficient reagent for this
transformation, we used the readily available Na,Nx-
ditritylated spermidine (SPD) and spermine (SPM)
derivatives, 6a23 and 7a24a,b (Scheme 1) as model com-
pounds. As the reagent 1a, employed by Golding and
co-workers to obtain polyamines guanylated at their
primary amino functions,10 failed to produce but trace
quantities of mono- and di-nitroguanylated products
from 6a, we turned our attention to the reagents 3, also
commercially available. However, treatment of 6a with
3a produced the byproduct 8a in 90% yield and with
3b the byproducts 6b (34% yield) and 8b in small quan-
tities, all arising from nucleophilic attack at the carbonyl
carbon of the protecting groups. On the other hand,
reaction of 6a with the powerful guanylating reagent
4a5d,16,21 produced the Boc-protected derivative 6c in
93% yield. This side reaction has also been observed
during the synthesis of the polyamine alkaloid smirno-
vine by Baker and Goodman.22 We finally examined
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Scheme 1. Guanylation of Na,Nx-ditritylated SPD and SPM with various reagents. Reagents and conditions: (i) DBTU/MR/Et3N, CH2Cl2; (ii)

TFA/CH2Cl2 (1:1).
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the combinations of reagent 2 (DBTU), also commer-
cially available and readily prepared through a reported
procedure,25 with MR (5) or N,N 0-dicyclohexylcarbodi-
imide (DCC). Under identical reaction conditions, the
former combination reacted with 6a much faster
(15min at 25 �C) and more efficiently (96% isolated
yield) to give the expected guanylated product 6d,26

whereas the latter did not effect completion of guanyl-
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Scheme 2. Guanylation of Na,Nx-ditritylated linear and aromatic polyamine

Et3N, CH2Cl2; (ii) Trt-bAla-OSu/Et3N, DMF; (iii) LiAlH4, THF.
ation even after 2h in refluxing CH2Cl2. Under identical
reaction conditions, 7a was converted to the diguanyl-
ated derivative 7b in 92% yield.

Further application of this combination of reagents to a
variety of other polyamine derivatives, such as the linear
tetra-amine 9a,24b the oxa-tetra-amine 10a,24b and the
hexa-amine 11a (Scheme 2),24b and the aromatic PAs
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analogs with DBTU in the presence of MR. Reagents: (i) DBTU/MR/
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Scheme 3. Guanylation of KukA analogs with DBTU in the presence of MR. Reagents: (i) DBTU/MR/Et3N, CH2 Cl2; (ii) H2/Pd–C, MeOH/AcOH/

H2O (5:1:0.1); (iii) TFA/CH2Cl2 (1:1).

Table 1. Guanylation of secondary amino functions of PAs and PACs with the combination of reagents DBTU and MRa

Entry PA/PAC Reaction time Product Yield (%)b

Guanylations

1 6a 15min 6d 96

2 7a 15min 7b 92

3 9a 1hc 9b 83

4 10a 2h 10b 80

5 11ad 10h 11b 30e

6 14b 30hf 14c 83

7 15b 45min 15c 85

8 16a 45min 16b 70

9 17a 15min 17b 72

Selected deprotections

10 6d 6e.3TFA 75

11 7b 7c.4TFA 70

12 16b 16c.2TFA 73g

13 17b 17c.TFA 84

a The structures of new compounds described in this communication were determined by a combination of spectroscopic techniques (IR, ESI-MS,

NMR) and MALDI-TOF/TOF HR-MS. For selected data see Ref. 29.
b Isolated yield after FCC and using as eluents PhMe/EtOAc (various combinations from 7:3 to 9:1) for compounds 6d, 7b, 9b–11b, 14c, and 15c,

EtOAc for compound 16b and CHCl3/MeOH (95:5) for compound 17b.
c Addition of 0.2mmol each of DBTU, MR, and Et3N after 15min at 25�C.
dObtained crude from LiAlH4 reduction of the corresponding tetra-amide (see Ref. 24b).
e Total yield for two steps, namely LiAlH4 reduction, followed by guanylation.
f Addition of 0.2mmol each of DBTU, MR and Et3N after 10h and then another 0.6mmol of DBTU, MR and Et3N after 15h at 25�C.
g Total yield in two steps, namely catalytic hydrogenation/hydrogenolysis, followed by TFA-mediated acidolysis.
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14b and 15b27 as well as the PACs 16a and 17a28

(Scheme 3) of the alkaloid KukA type was unexcep-
tional and gave the corresponding guanylated products
9–11b and 14c, 15c, 16b and 17b in very good yields
(Table 1). Simultaneous removal of both acid-labile
groups, namely Trt and Boc, can be effected by routine
treatment with 50% CF3CO2H (TFA) in CH2Cl2 for
10min at 0 �C and then for 45min at 25 �C. In the case
of the conjugate 16a, simultaneous O-deprotection and
double bond saturation were effected by catalytic hydro-
genolysis in MeOH/AcOH/H2O (5:1:0.1) in the presence
of 10% Pd–C (0.2g per gram of 16a) for 3h at 25 �C.
Subsequent TFA-mediated acidolysis of the Boc groups
gave the novel KukA analog 16c. The spermidine KukA
(SkukA) analog 17c was also readily obtained from 17b
through TFA-mediated acidolysis.

In conclusion, the present study shows that DBTU with
MR is a powerful and reliable combination of reagents
for the fast and efficient guanylation of secondary amino
functions of PAs and PACs under very mild reaction
conditions. Tests to determine the biological activities
of these novel compounds are currently in progress.
References and notes

1. Manimala, J. C.; Anslyn, E. V. Eur. J. Org. Chem. 2002,
3909–3922, and references cited therein.
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